Peter M. AKHMETIEV

The Kervaire Invariant of framed manifolds as the obstruction to embeddability

Abstract: Let N^{4k+2} be a closed smooth manifold, dim(N) = 4k + 2, equipped with a stable framing Ψ_N . Let $\varphi : N^{4k+2} \hookrightarrow \mathbb{R}^{6k+3}$ be a smooth framed immersion in the prescribed regular homotopy class of Ψ_N . We denote by L^{2k+1} a double-point manifold of φ . A skew-framed immersion $\psi : L^{2k+1} \hookrightarrow \mathbb{R}^{4k+2}$ is well defined up to a regular skewframed cobordism. Let us denote by $\Theta(\psi)$ the integer number (modulo 2) of double self-intersection points of ψ . This number depends only on the original framed manifold $(N^{4k+2}, \Psi_N) : \Theta(\psi) = \Theta(N^{4k+2}, \Psi_N)$.

Main Theorem. The integer $\Theta(N^{4k+2}, \Psi_N) \mod 2$ is the Kervaire invariant of the stably framed manifold (N^{4k+2}, Ψ_N) .

Theorem. Let N^{30} (M^{62}) be a closed 14-connected (30-connected) framed manifold with Kervaire Invariant 1. Then N^{30} (M^{62}) is non-embeddable smoothly into \mathbb{R}^{46} (into \mathbb{R}^{94}) and is embeddable smoothly into \mathbb{R}^{47} (into \mathbb{R}^{95}).

(Joint work with Matija Cencelj, and Dušan Repovš.)