Leonard R. RUBIN

Two Difficult Problems in Extension Theory

Abstract. Extension theory is based on the following notion. Given a space X and a CW-complex K, one says that K is an absolute extensor for X, written $X\tau K$, if for each closed subset A of X and map $f: A \to K$, there exists a map $F: X \to K$ that extends f. Given a class \mathcal{C} of spaces and a class \mathcal{T} of CW-complexes, one can define an equivalence relation on \mathcal{T} so that if $K \in \mathcal{C}$, then its equivalence class is denoted $[K]_{\mathcal{C},\mathcal{T}}$. Then for $X \in \mathcal{C}, X\tau K$ implies that $X\tau L$ for all $L \in [K]_{\mathcal{C},\mathcal{T}}$. We shall describe this relation in our talk. From now on, let \mathcal{C} be the class of compact metrizable spaces and \mathcal{T} the class of all CW-complexes.

In this theory there is a notion of the extension dimension of a given space $X \in \mathcal{C}$, and it has been proven that there always exists $K \in \mathcal{T}$ such that the extension dimension of X equals $[K]_{\mathcal{C},\mathcal{T}}$. The latter is a type of unique "minimal" element in a certain partially ordered class. *Problem 1.* Determine whether for each $X \in \mathcal{C}$ there exists a countable CW-complex K such that the extension dimension of X equals $[K]_{\mathcal{C},\mathcal{T}}$.

Problem 2. For a given $K \in \mathcal{T}$ determine if there exists $X \in \mathcal{C}$ such that X is universal for $[K]_{\mathcal{C},\mathcal{T}}$. Put simply, we ask for $X \in \mathcal{C}$ such that $X\tau K$ and if $Y \in \mathcal{C}$ and $Y\tau K$, then Y embeds in X.