Eva MILICZKÁ (TRENKLEROVÁ) Basic sets in the digital plane

Abstract: A set K in the plane \mathbb{R}^2 is said to be *basic* if each continuous function $f: K \to \mathbb{R}$ can be expressed as a sum f(x, y) = g(x) + h(y) with $g, h: \mathbb{R} \to \mathbb{R}$ continuous functions. Analogously we define a digital set K_k in the digital plane to be basic if for each digital function $f: K_k \to \mathbb{R}$ there exist digital functions $g, h: \mathbb{I}_k \to \mathbb{R}$ on the digital unit interval \mathbb{I}_k such that f(x, y) = g(x) + h(y) for each pixel $(x, y) \in K_k$. Basic subsets of the plane were characterized by Sternfeld and Skopenkov.

In our talk we shall prove a digital analogy of their result. Moreover we shall explore the properties of digital basic sets, and their possible use in image analysis.