Andrei VESNIN

On volumes and normalized volumes of right-angled hyperbolic polyhedra

Abstract: Let \mathcal{R} be the class of right-angled polyhedra in hyperbolic space \mathbb{H}^{3}. Denote by vert (R) the number of vertices of a polyhedron R and by $\operatorname{vol}(R)$ its volume. Explicit formulae for volumes of right-angled hyperbolic polyhedra are known for few families only (see [1]).

In last two years some interesting results on volumes of right-angled hyperbolic polyhedra were obtained. Inoue [2] introduced two operations, decomposition and edge surgery, on compact polyhedra from \mathcal{R} which admit to reduce any polyhedron to a set of Löbell polyhedra introduced in [1]. Two-sided estimates for volume of polyhedra from \mathcal{R} in terms of number of vertices were obtained in [3]. By normalized volume of a hyperbolic polyhedron R we will mean the value $\omega(R)=\operatorname{vol}(R) / \operatorname{vert}(R)$.

We will discuss the behavior of $\omega(R)$ for various classes of polyhedra in \mathbb{H}^{3}. In particular, under the operations defined in [2]. We will show that upper estimates from [3] for volumes of hyperbolic polyhedra are related to limits of $\omega(R)$ on suitable families of polyhedra [4]. Also, low bounds form [3] will be improved.

References

[1] Vesnin A., Volumed of hyperbolic Löbell manifolds. Math. Notes. 1998. V. 64. P. 13-24.
[2] Inoue T. Organizing volumes of right-angled hyperbolic polyhedra. Alg. \& Geom. Topology. 2008. V. 8. P. 1523-1565.
[3] Atkinson C. K. Volume estimates for equiangular hyperbolic Coxeter polyhedra. Alg. \& Geom. Topology. 2009. V. 9. P. 1225-1254.
[4] Repovs D., Vesnin A., Two-sided bounds for volumes of right-angled hyperbolic polyhedra. Preprint, 2009. 6 pp.

