
Bonded knots

Boštjan Gabrovšek
SGT & GWU, 12 November 2020



Motivation

We model a protein backbone with a closed embedded interval.

31 41 52

1



Problems & questions

1. How do we model a knotted protein / what is knottedness in a
protein?

2. How do we distinguish/classify such structures?
3. Why are proteins knotted (evolutionary advantages)?
4. How do protein form knots?
5. Understand the (un)knotting process in microbiological processes.
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Prelomnice

• 1994: existence of knotted proteins proposed (Mansfield)
• 1994: first knotted protein found (Liang, Mislow)
• 2000: first deep knot found, 31 in 41 (Taylor)
• 2014: knotted protein database knotprot.cent.uw.edu.pl

Protein Tp0642, deepest knot found up to date (Lim, Jackson, 2015)
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Advantages

Hypothesised (biological) advantages of knotted proteins:

• kinetic stability
• increases thermal
• prevention to being pulled into the proteasome
• knotted enzymes are often found in the proximity of proteins soon to

be degraded and they face the danger of being degraded themselfs
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Topological models

In connection with knot theory, knotted protein have been so far
modelled as:

knots slipknots / lassos Θ-curves

knotoids virtual knots
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Closing a knot

Existence of an unambiguous closure method is still an open question,
but common methods are of

• direct nature (Virnau, Mirny,...)

C
C

• probabilistic nature (Sulkowka, Millet,...)

PDB

3BJX: 61(64%), 01(27%), 41(6%), 31(2.5%)
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Bonds & Orientation

The three-dimensional protein structure also consists of bonds tying parts
of the peptide backbone. These bonds have both a structural and
functional role and can be of several types.
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Spatial graphs

We can model a protein with bonds as:

3-valent spatial graph bonded knot

We distinguish between non-rigid graphs and rigid graphs.

non-rigid vertex rigid vertex

Prostorska vozla, ki nista togo ekvivalentna.
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Non-rigid bonded knots (G., 2019)

A (non-rigid) colored bonded knot is the triple (K ,B, c), where:

• K ↪→ R3 is an oriented knot,
• B = {b1, b2, . . . , bn} is the set of bonds properly embedded into

R3 − K ,
• c : B → N is the coloring function.

Two knots are equivalent if they are ambient isotopic.
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Reidemeister moves

A diagram of a bonded knots K is a regular projection of K to a plane.

Forbidden positions:

Reidemeister moves:
I←→ I←→ II←→ III←→

IV←→ IV’←→ V←→

Theorem: Non-rigid vertex (ambient) isotopy is generated by moves I–V.

In order to study rigid vertex isotopy, we replace move V by either:

RV←→ RV∗←−→ RV∗←−→
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Rigid bonded knots

Let D be the set of all colored bonded knot diagrams.

Rigid (colored) bonded knots are equivalence classes

L̄ = D/∼,

where D1 ∼ D2 iff thy are connected through planar isotopy and a finite
sequence of moves I–IV and RV (or RV∗).

Rigid bonded knots are easier to study, but non-rigid knots better reflect
spatial isotopy (and are better models of bonded proteins).
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Invariants of spatial graphs

Rigid graphs:

• Yamada polynomial
• Kauffman’s T invariant

Non-rigid graphs:

• topological invariants of R3 \ G (are weak)

• tangle-replacement invariants
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The HOMFLYPT skein module of bonded knots

Let

• L be the set of all non-rigid bonded knots,
• R be a commitative ring with units l in m (also let l2 + 1 and

l2 ±ml + 1 be invertible in R),
• R[L] be the free R-modul generated by L,
• S(R, l ,m) be the submodule generated by expressions

l + l−1 + m

The HOMFLYPT skein module is the quotient module

H(R, l ,m) = R[L]/S(R, l ,m)

By taking L̄ to be the set of rigid bonded knots, we similarly define the
rigid HOMFLYPT skein module H̄(R, l ,m)

13



The HOMFLYPT skein module of rigid bonded knots

We define the following elementary bonded knots with color i :

Θi = i , Θ̄i = i , Hi = i H̄i = i ,

Theorem (G., 2019)
The HOMFLYPT skein module of rigid bonded knots H is freely
generated by

B =
{ k∏

i=1
Θmi

i Θ̄m̄′i
i Hni

i H̄n′i
i | k ∈ N; ~m, ~m′,~n,~n′ ∈ Nk

0 \~0
}
∪ {U}.
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Idea of proof

Lemma: L1 L2 = − m
l+l−1 L1 L2 .

Indeed,

L1 L2
isot.= L1 L2

H= − 1
l2

L1 L2−
m
l

L1 L2
isot.= − 1

l2
L1 L2−

m
l

L1 L2.
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Idea of proof (generating set)

First, we show that B is the generating set taking these steps:

1. isolate the bond,
2. show that this bond can be “cut out” and expressed as a linear

combination of knots and Θ’s and H’s,
3. repeat the process until no bonds left.

Using the HOMFLYPT relation, we can compute:
−(l2+lm+1)(l2−lm+1) = (l3+l)m

(
+

)
+l2m2

(
+

)
Using the lemma, we get:
(l2 + lm + 1)(l2 − lm + 1) = l2m2

(
· Hi + · Θi

)
+ l3m3

1+l2
(

· Θi + ·Hi
)

.

Similarly, we can get:
(l2 + lm + 1)(l2 − lm + 1) = l2m2

(
· H̄i + · Θ̄i

)
+ l3m3

1+l2
(

· Θ̄i + · H̄i
)

.
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Idea of proof (freeness)

Second, we show that H is free.

We show
∑

A∈B r(A)A = 0 ⇒ r(A) = 0,∀A.

We define R-linear maps L̂d → L̂d−1, which locally replace the last d-th
bond of each generator with a non-bond:

gd,0 : 7→ gd,∞ : 7→

7→ 7→ 0

gd,+ : 7→ 0 gd,− : 7→ 0

7→ 7→

The four maps can be extended R-linearly to maps RL̂d → RL̂d−1,
which induce the maps on the module:

g∗d,0, g∗d,∞, g∗d,+, g∗d,− : Ĥd (R, l ,m)→ Ĥd−1(R, l ,m).
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Idea of proof (freeness)

We apply the maps on
∑

A∈B r(A)A = 0. E.g., applying gd,0, we get

0 =
∑

B∈B̂d−1

B
(

r(BΘcd ) g∗1,0(Θcd ) + r(BΘ̄cd ) g∗1,0(Θ̄cd ) + r(BHcd ) g∗1,0(Hcd ) + r(BH̄cd ) g∗1,0(H̄cd )
)

=
∑

B∈B̂d−1

B
(

r(BΘcd ) + r(BΘ̄cd ) +
−(l + l−1)

m
r(BHcd ) +

−(l + l−1)
m

r(BH̄cd )
)

.

For the other three maps we get:

0 =
∑

B∈B̂d−1

B
(
−(l + l−1)

m
r(BΘcd ) + r(BHcd )

)
.

0 =
∑

B∈B̂d−1

B
(

l2 − m2l2 + 1
l3m

r(BΘ̄cd ) + r(BH̄cd )
)

0 =
∑

B∈B̂d−1

B
(
−(l + l−1)

m
r(BΘ̄cd ) + r(H̄cd B)

)
.

The 4× 4 system has an invertible determinant. By induction on the
number of bonds, we conclude that the module is free.
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Computing the invariant

Let K be a bonded knot. The expression [K ]B̄, K written in the basis of
the skein module, is an invariant of colored bonded knots.

We can compute the invariant [K ]B̄ by the following set of instructions:

1. isolate the bonds using move IV,

2. cut out the bonds (using the relations in the freeness proof),

3. compute the HOMFLYPT polynomial P of the remaining part of the
classical knot.
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Example 1

The Θ-curve Θ31 has three associated bonded knots.

−→

[ ]
B̄

= (1−2m2 − l−2) + l−3m

[ ]
B̄

=
[ ]

B̄
= (l2m2 − 2l2 + m2 − 1) + (lm3 − 2lm)
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Example 2

Toxins from venomous organisms form disulfide-rich peptides.

CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)[
KCN29

]
B̄

=
1

(1 + l2)2(l2 + ml + 1)2(l2 − ml + 1)2

(
l6m4(−1 − 3l2 − 3l4 − l6 + l2m2 + 2l4m2)

+ l5m3(1 + 3l2 + 3l4 + l6 − m2 − 6l2m2 − 6l4m2 − l6m2 + l2m4 + 3l4m4)

+ l7m5(−1 − l2 + l2m2) + l6m6(−1 − 2l2 + l2m2)

+ l6m4(−1 − 2l2 − l4 − m2 − l2m2 + l4m2 + l2m4) + l5m5(−1 − 3l2 − 2l4 + l2m2 + l4m2)

)
[

KADWX-1
]
B̄

=
1

(1 + l2)2(l2 + ml + 1)2(l2 − ml + 1)2

(
l6m4(−1 − 2l2 − l4 + l4m2)

+ l7m5(−4 − 4l2 + 2l2m2) + l7m5(−1 + l4) + l7m5(−2 − 2l2 + l2m2)

+ l4m4(1 + 2l2 + l4 − 2l2m2 − 3l4m2 + l4m4) + l6m4(−2 − 4l2 − 2l4 + 2l4m2)

)
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The HOMFLYPT skein module of non-rigid bonded knots

Theorem (G., 2019)
The HOMFLYPT skein module of rigid bonded knots H is freely
generated by all finite products of Θ′is:

B =
{

Θn1
1 Θn2

2 · · ·Θ
nk
k | ~n ∈ Nk

0 \~0
}
∪ {U}.

It holds for a knot K with k bonds that

[K ]B =
(
−lm
1 + l2

)k−1
P(K ′)B,

where B ∈ B and P(K ′) is the HOMFLYPT polynomial of K without
bonds.
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Example 1 (non-rigid case)

−→

[ ]
B

= P
( )

Θ = (l−2m2 − 2l−2 − l−4) Θ[ ]
B

= P
( )

Θ = Θ
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Example 2 (non-rigid case)

CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)

[KCN29]B = l2m2

(1+l2)2 Θ3, [KADWX-1]B = l2m2

(1+l2)2 Θ3.
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Expanding the variables / further work

Incorporate into the invariant information about the bonded knots’ CT
(circuit topology).

KCN29 CT (KCN29) KADWX-1 CT (KADWX-1)
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Expanding the variables / further work

Generalize the Yamada polynomial R : (Grig ⊂ R3)→ Z[A±1] to bonded
knots.

The yamada polynomial is defined by the following relations:

1. R
( )

= AR
( )

+ A−1R
( )

+ R
( )

,

2. R(G) = R(G − e) + R(G/e), e ni zanka,
3. R(G1 t G2) = R(G1)R(G2),
4. R(G1 ∨ G2) = −R(G1)R(G2),

5. R
( )

= −(−A− 1− A−1)n,

6. R(∅) = 1.

Remark: the R is an invariant of rigid-vertex graphs with max degree
≥ 4, but an invariant non-rigid-vertex graphs with max degree ≤ 3.
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Expanding the variables / further work

Generalize Kauffman’s T invariant

Let G ⊂ S3 be spatial graph. Consider the local replacements of a vertex:

Let r(G) be the set of closed curves obtained by local replacements of all
vertices.

T (G) = {r(G)}r
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Expanding the variables / further work

We can expand T by counting the number of bonds lying on the closed
components.

Consider coloring two different arcs of the Θ-curve Θ31:

−→

Values of the extended invariant T ′ on these two bonded knots

−→ , , , , · · · T ′ = { , 1 ,
1

}

−→ , , , , · · · T ′ = { , 1 }
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