Univerza v Ljubljani

Bonded knots

Boštjan Gabrovšek SGT & GWU, 12 November 2020

Motivation

We model a protein backbone with a closed embedded interval.

- 1. How do we model a knotted protein / what is knottedness in a protein?
- 2. How do we distinguish/classify such structures?
- 3. Why are proteins knotted (evolutionary advantages)?
- 4. How do protein form knots?
- 5. Understand the (un)knotting process in microbiological processes.

Prelomnice

- 1994: existence of knotted proteins proposed (Mansfield)
- 1994: first knotted protein found (Liang, Mislow)
- 2000: first deep knot found, 3₁ in 4₁ (Taylor)
- 2014: knotted protein database knotprot.cent.uw.edu.pl

Protein Tp0642, deepest knot found up to date (Lim, Jackson, 2015)

Hypothesised (biological) advantages of knotted proteins:

- kinetic stability
- increases thermal
- prevention to being pulled into the proteasome
- knotted enzymes are often found in the proximity of proteins soon to be degraded and they face the danger of being degraded themselfs

Topological models

In connection with knot theory, knotted protein have been so far modelled as:

knots

slipknots / lassos

Θ-curves

Closing a knot

Existence of an unambiguous closure method is still an open question, but common methods are of

direct nature (Virnau, Mirny,...)

probabilistic nature (Sulkowka, Millet,...)

3BJX: 61(64%), 01(27%), 41(6%), 31(2.5%)

Bonds & Orientation

The three-dimensional protein structure also consists of bonds tying parts of the peptide backbone. These bonds have both a structural and functional role and can be of several types.

Spatial graphs

We can model a protein with bonds as:

3-valent spatial graph

bonded knot

We distinguish between *non-rigid* graphs and *rigid* graphs.

non-rigid vertex

rigid vertex

Non-rigid bonded knots (G., 2019)

A (non-rigid) colored bonded knot is the triple (K, \mathcal{B}, c) , where:

- $K \hookrightarrow \mathbb{R}^3$ is an oriented *knot*,
- $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ is the set of *bonds* properly embedded into $\mathbb{R}^3 K$,
- $c: \mathcal{B} \to \mathbb{N}$ is the coloring function.

Two knots are *equivalent* if they are ambient isotopic.

Reidemeister moves

A *diagram* of a bonded knots K is a *regular projection* of K to a plane.

Forbidden positions: \rightarrow \rightarrow \rightarrow \rightarrow

Reidemeister moves:

Theorem: Non-rigid vertex (ambient) isotopy is generated by moves I–V. In order to study rigid vertex isotopy, we replace move V by either:

Let $\ensuremath{\mathcal{D}}$ be the set of all colored bonded knot diagrams.

Rigid (colored) bonded knots are equivalence classes

$$ar{\mathcal{L}}=\mathcal{D}/{\sim}$$

where $D_1 \sim D_2$ iff thy are connected through planar isotopy and a finite sequence of moves I–IV and RV (or RV^{*}).

Rigid bonded knots are easier to study, but *non-rigid knots* better reflect spatial isotopy (and are better models of bonded proteins).

Rigid graphs:

- Yamada polynomial
- Kauffman's *T* invariant

Non-rigid graphs:

• topological invariants of $\mathbb{R}^3 \setminus G$ (are weak)

tangle-replacement invariants

Let

- \mathcal{L} be the set of all non-rigid bonded knots,
- *R* be a commitative ring with units *l* in *m* (also let $l^2 + 1$ and $l^2 \pm ml + 1$ be invertible in *R*),
- $R[\mathcal{L}]$ be the free *R*-modul generated by \mathcal{L} ,
- S(R, I, m) be the submodule generated by expressions

$$l + l^{-1} + m$$

The HOMFLYPT skein module is the quotient module

$$\mathcal{H}(R, I, m) = R[\mathcal{L}]/S(R, I, m)$$

By taking $\overline{\mathcal{L}}$ to be the set of rigid bonded knots, we similarly define the rigid HOMFLYPT skein module $\overline{\mathcal{H}}(R, I, m)$

The HOMFLYPT skein module of rigid bonded knots

We define the following *elementary bonded knots* with color *i*:

$$\Theta_i = \overbrace{i}^{i}, \quad \overline{\Theta}_i = i \bigotimes_{i}^{i}, \quad H_i = \overbrace{i}^{i}, \quad \overline{H}_i = \overbrace{i}^{i},$$

Theorem (G., 2019)

The HOMFLYPT skein module of *rigid* bonded knots \mathcal{H} is freely generated by

$$\mathcal{B} = \Big\{\prod_{i=1}^{k} \Theta_i^{m_i} \bar{\Theta}_i^{\bar{m}_i'} H_i^{n_i} \bar{H}_i^{n_i'} \mid k \in \mathbb{N}; \ \bar{m}, \bar{m}', \bar{n}, \bar{n}' \in \mathbb{N}_0^k \setminus \vec{0} \Big\} \cup \{U\}.$$

Indeed,

$$L_1 \underbrace{\downarrow}_{L_2} \stackrel{\text{isot.}}{=} L_1 \underbrace{\downarrow}_{L_2} \stackrel{\text{H}}{=} -\frac{1}{l^2} L_1 \underbrace{\downarrow}_{L_2} \stackrel{\text{m}}{\downarrow} L_1 \underbrace{\downarrow}_{L_2} \stackrel{\text{isot.}}{=} -\frac{1}{l^2} L_1 \underbrace{\downarrow}_{L_2} \stackrel{\text{m}}{\downarrow} L_2 - \frac{m}{l} L_1 \underbrace{\downarrow}_{L_2} \stackrel{\text{m}}{\downarrow} L_2.$$

First, we show that ${\mathcal B}$ is the generating set taking these steps:

- 1. isolate the bond,
- 2. show that this bond can be "cut out" and expressed as a linear combination of knots and Θ 's and H's,
- 3. repeat the process until no bonds left.

Using the HOMFLYPT relation, we can compute:

$$-(l^{2}+lm+1)(l^{2}-lm+1)\left| \underbrace{}_{i} = (l^{3}+l)m\left(\underbrace{}_{i} \left(+ \underbrace{}_{i} \underbrace{}_{i} \right) + l^{2}m^{2}\left(\underbrace{}_{i} \underbrace{}_{i} + \underbrace{}_{i} \underbrace{}_{i} \right) \right)$$

Using the lemma, we get:
$$(l^{2}+lm+1)(l^{2}-lm+1)\underbrace{}_{i} = l^{2}m^{2}\left(\underbrace{}_{i} \cdot H_{i} + \underbrace{}_{i} \underbrace{}_{i} \cdot \Theta_{i} \right) + \frac{l^{3}m^{3}}{1+l^{2}}\left(\underbrace{}_{i} \cdot \Theta_{i} + \underbrace{}_{i} \underbrace{}_{i} \cdot H_{i} \right).$$

Similarly, we can get:

$$(l^2 + lm + 1)(l^2 - lm + 1) = l^2 m^2 \left(\mathbf{i} \cdot \mathbf{\bar{H}}_i + \mathbf{i} \cdot \mathbf{\bar{\Theta}}_i \right) + \frac{l^3 m^3}{1 + l^2} \left(\mathbf{i} \cdot \mathbf{\bar{\Theta}}_i + \mathbf{i} \cdot \mathbf{\bar{H}}_i \right).$$

Idea of proof (freeness)

Second, we show that ${\mathcal H}$ is free.

We show $\sum_{A \in \mathcal{B}} r(A) A = 0 \implies r(A) = 0, \forall A.$

We define *R*-linear maps $\hat{\mathcal{L}}_d \to \hat{\mathcal{L}}_{d-1}$, which locally replace the last *d*-th bond of each generator with a non-bond:

The four maps can be extended *R*-linearly to maps $R\hat{\mathcal{L}}_d \to R\hat{\mathcal{L}}_{d-1}$, which induce the maps on the module:

$$g_{d,0}^*, g_{d,\infty}^*, g_{d,+}^*, g_{d,-}^* : \hat{\mathcal{H}}_d(R, I, m) \to \hat{\mathcal{H}}_{d-1}(R, I, m).$$

Idea of proof (freeness)

We apply the maps on $\sum_{A\in\mathcal{B}} r(A) A = 0$. E.g., applying $g_{d,0}$, we get

$$0 = \sum_{B \in \hat{\mathcal{B}}_{d-1}} B\left(r(B\Theta_{c_d}) g_{1,0}^*(\Theta_{c_d}) + r(B\bar{\Theta}_{c_d}) g_{1,0}^*(\bar{\Theta}_{c_d}) + r(BH_{c_d}) g_{1,0}^*(H_{c_d}) + r(B\bar{H}_{c_d}) g_{1,0}^*(\bar{H}_{c_d}) \right)$$

$$= \sum_{B \in \hat{\mathcal{B}}_{d-1}} B\left(r(B\Theta_{c_d}) + r(B\bar{\Theta}_{c_d}) + \frac{-(l+l^{-1})}{m}r(BH_{c_d}) + \frac{-(l+l^{-1})}{m}r(B\bar{H}_{c_d}) \right).$$

For the other three maps we get:

$$0 = \sum_{B \in \hat{B}_{d-1}} B\left(\frac{-(l+l^{-1})}{m}r(B\Theta_{c_d}) + r(BH_{c_d})\right).$$

$$0 = \sum_{B \in \hat{B}_{d-1}} B\left(\frac{l^2 - m^2l^2 + 1}{l^3m}r(B\bar{\Theta}_{c_d}) + r(B\bar{H}_{c_d})\right).$$

$$0 = \sum_{B \in \hat{B}_{d-1}} B\left(\frac{-(l+l^{-1})}{m}r(B\bar{\Theta}_{c_d}) + r(\bar{H}_{c_d}B)\right).$$

The 4×4 system has an invertible determinant. By induction on the number of bonds, we conclude that the module is free.

Let *K* be a bonded knot. The expression $[K]_{\overline{B}}$, *K* written in the basis of the skein module, is an *invariant of colored bonded knots*.

We can *compute* the invariant $[K]_{\bar{B}}$ by the following set of instructions:

- 1. isolate the bonds using move IV,
- 2. cut out the bonds (using the relations in the freeness proof),
- 3. compute the HOMFLYPT polynomial *P* of the remaining part of the classical knot.

The $\Theta\text{-curve}\ \Theta3_1$ has three associated bonded knots.

Example 2

Toxins from venomous organisms form disulfide-rich peptides.

CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)

$$\begin{bmatrix} \kappa_{\text{CN29}} \end{bmatrix}_{\vec{B}} = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-3l^2-3l^4-l^6+l^2m^2+2l^4m^2) \bigoplus S \right) \\ + l^5 m^3 (1+3l^2+3l^4+l^6-m^2-6l^2m^2-6l^4m^2-l^6m^2+l^2m^4+3l^4m^4) \bigoplus S \right) \\ + l^7 m^5 (-1-l^2+l^2m^2) \bigotimes S \right) \\ + l^6 m^4 (-1-2l^2-l^4-m^2-l^2m^2+l^4m^2+l^2m^4) \bigotimes S \right) \\ + l^6 m^4 (-1-2l^2-l^4-m^2-l^2m^2+l^4m^2+l^2m^4) \bigotimes S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ + l^7 m^5 (-2-2l^2+l^2m^2) \bigotimes S \right) \\ + l^6 m^4 (1+2l^2+l^4-2l^2m^2-3l^4m^2+l^4m^4) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2-ml+1)^2} \left(l^6 m^4 (-1-2l^2-l^4+l^4m^2) \bigoplus S \right) \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2+l^4-2l^2m^2)^2} \\ = \frac{1}{(1+l^2)^2(l^2+ml+1)^2(l^2+l^4-2l^2m^2)^2} \\ = \frac{1}{($$

Theorem (G., 2019)

The HOMFLYPT skein module of *rigid* bonded knots \mathcal{H} is freely generated by all finite products of $\Theta'_i s$:

$$\mathcal{B} = \left\{ \Theta_1^{n_1} \Theta_2^{n_2} \cdots \Theta_k^{n_k} \mid \vec{n} \in \mathbb{N}_0^k \setminus \vec{0} \right\} \cup \{U\}.$$

It holds for a knot K with k bonds that

$$[K]_{\mathcal{B}} = \left(\frac{-lm}{1+l^2}\right)^{k-1} P(K') B,$$

where $B \in \mathcal{B}$ and P(K') is the *HOMFLYPT polynomial* of *K* without bonds.

Example 1 (non-rigid case)

$$\bigcirc \rightarrow \oslash \oslash \oslash$$

$$\begin{bmatrix} \bigcirc \\ \end{bmatrix}_{\mathcal{B}} = P(\bigcirc) \Theta = (I^{-2}m^2 - 2I^{-2} - I^{-4})\Theta$$
$$\begin{bmatrix} \bigcirc \\ \end{bmatrix}_{\mathcal{B}} = P(\bigcirc) \Theta = \Theta$$

Example 2 (non-rigid case)

CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)

$$[K_{CN29}]_{\mathcal{B}} = \frac{l^2 m^2}{(1+l^2)^2} \Theta^3, \qquad \qquad [K_{ADWX-1}]_{\mathcal{B}} = \frac{l^2 m^2}{(1+l^2)^2} \Theta^3.$$

Incorporate into the invariant information about the bonded knots' *CT* (*circuit topology*).

Generalize the Yamada polynomial $R : (\mathcal{G}_{rig} \subset \mathbb{R}^3) \to \mathbb{Z}[A^{\pm 1}]$ to bonded knots.

The yamada polynomial is defined by the following relations:

1.
$$R\left(\swarrow\right) = AR\left(\bigcirc\left(\right) + A^{-1}R\left(\rightleftharpoons\right) + R\left(\swarrow\right)\right)$$

2. $R(G) = R(G - e) + R(G/e)$, *e* ni zanka,
3. $R(G_1 \sqcup G_2) = R(G_1)R(G_2)$,
4. $R(G_1 \lor G_2) = -R(G_1)R(G_2)$,
5. $R\left(\textcircled{O}\right) = -(-A - 1 - A^{-1})^n$,
6. $R(\emptyset) = 1$.

Remark: the *R* is an invariant of rigid-vertex graphs with max degree \geq 4, but an invariant non-rigid-vertex graphs with max degree \leq 3.

Expanding the variables / further work

Generalize Kauffman's T invariant

Let $G \subset S^3$ be spatial graph. Consider the local replacements of a vertex:

Let r(G) be the set of closed curves obtained by local replacements of all vertices.

$$T(G) = \{r(G)\}_r$$

Expanding the variables / further work

We can expand \mathcal{T} by counting the number of bonds lying on the closed components.

Consider coloring two different arcs of the Θ -curve $\Theta 3_1$:

Values of the extended invariant \mathcal{T}' on these two bonded knots

