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We model a protein backbone with a closed embedded interval.




Problems & questions

1. How do we model a knotted protein / what is knottedness in a
protein?

How do we distinguish/classify such structures?

Why are proteins knotted (evolutionary advantages)?

How do protein form knots?
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Understand the (un)knotting process in microbiological processes.



Prelomnice

= 1994: existence of knotted proteins proposed (Mansfield)

= 1994: first knotted protein found (Liang, Mislow)

= 2000: first deep knot found, 3; in 4; (Taylor)

= 2014: knotted protein database knotprot.cent.uw.edu.pl

Protein Tp0642, deepest knot found up to date (Lim, Jackson, 2015)


knotprot.cent.uw.edu.pl

Hypothesised (biological) advantages of knotted proteins:

= kinetic stability
= increases thermal
= prevention to being pulled into the proteasome

= knotted enzymes are often found in the proximity of proteins soon to
be degraded and they face the danger of being degraded themselfs



Topological models

In connection with knot theory, knotted protein have been so far
modelled as:
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knots slipknots / lassos ©-curves

knotoids virtual knots



Closing a knot

Existence of an unambiguous closure method is still an open question,
but common methods are of

= direct nature (Virnau, Mirny,...)

) (XD =

= probabilistic nature (Sulkowka, Millet,...)

PDB

3BJX: 61(64%), 01(27%), 41(6%),



Bonds & Orientation

The three-dimensional protein structure also consists of bonds tying parts
of the peptide backbone. These bonds have both a structural and
functional role and can be of several types.

Hydrophobic effect/
van der Waals forces

Hydrogen B’ond

covalent bonds: 200-1000 kJ/mol
non-covalent bonds: 1-40 kJ/mol
(can have a strong combined effect)

Q
The protein backbone also 20/\—%—\00
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~lonic bond

has a natural orientation

N-terminus C-terminus



Spatial graphs

We can model a protein with bonds as:
3-valent spatial graph bonded knot

We distinguish between non-rigid graphs and rigid graphs.

B

non-rigid vertex rigid vertex



Non-rigid bonded knots (G., 2019)

A (non-rigid) colored bonded knot is the triple (K, B, ¢), where:

s K < R3is an oriented knot,
» B={by, by,...,b,} is the set of bonds properly embedded into
R3 - K,

= c: B — Nis the coloring function.

Two knots are equivalent if they are ambient isotopic.



Reidemeister moves

A diagram of a bonded knots K is a regular projection of K to a plane.

Forbidden positions: > >/ X >’< ><

Reidemeister moves:

0F) 0 (P BN

HEE HTIE AT

Theorem: Non-rigid vertex (ambient) isotopy is generated by moves I-V.

In order to study rigid vertex isotopy, we replace move V by either:

O O R D T Gl
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Rigid bonded knots

Let D be the set of all colored bonded knot diagrams.

Rigid (colored) bonded knots are equivalence classes

L=D/~,

where Dy ~ D, iff thy are connected through planar isotopy and a finite
sequence of moves I-IV and RV (or RV*).

Rigid bonded knots are easier to study, but non-rigid knots better reflect
spatial isotopy (and are better models of bonded proteins).
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Invariants of spatial graphs

Rigid graphs:

= Yamada polynomial

= Kauffman's T invariant
Non-rigid graphs:

= topological invariants of R®\ G (are weak)

= tangle-replacement invariants
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The HOMFLYPT skein module of bonded knots

Let

= [ be the set of all non-rigid bonded knots,

= R be a commitative ring with units / in m (also let /> + 1 and
I> & ml + 1 be invertible in R),

= R[L] be the free R-modul generated by L,

= S(R,/,m) be the submodule generated by expressions
X )
/ /
\ + / +m
The HOMFLYPT skein module is the quotient module

H(R, 1, m) = R[L]/S(R, I, m)

By taking L to be the set of rigid bonded knots, we similarly define the
rigid HOMFLYPT skein module H(R,/, m)
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The HOMFLYPT skein module of rigid bonded knots

We define the following elementary bonded knots with color i:

ei:@7 éizig, Hig F/ig’

Theorem (G., 2019)
The HOMFLYPT skein module of rigid bonded knots # is freely
generated by

k
B= {He;"fé@fH,"fF/,"/‘ |k eN; m, /i 7/ e Ng\ﬁ} u{U}.

i
i=1
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Idea of proof

. —> _ m
Lemma: Ll = — 7 LyfLe.

Indeed,

Ll isot. LN Ll 7/&2 Lll\:\’Lz—? L)AL isot. 7%2 L szf LY La.
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Idea of proof (generating set)

First, we show that B is the generating set taking these steps:

1. isolate the bond,

2. show that this bond can be “cut out” and expressed as a linear
combination of knots and ©'s and H'’s,

3. repeat the process until no bonds left.

Using the HOMFLYPT relation, we can compute:

—(P+Im+1)(P—Im+1) >]< = (’3“)’”(;]) ( N :5: > e ( E N >O<>

Using the lemma, we get:
(P +im+1) (P —im+1) X = Pm? (- Hi+) (- © ei+) (Hi)
Similarly, we can get:

(P +im+ 1)(P — Im+ 1) = Pr? (- A+ Y 60) + 2m (2.8, + - Ay
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Idea of proof (freeness)

Second, we show that H is free.
We show ZAGB r(A)A=0 = r(A)=0,VA

We define R-linear maps Lg — Lg_1, which locally replace the last d-th
bond of each generator with a non-bond:

g0 Boce )
P 0

gd+: L0 g1 X' 0
L= X - A

The four maps can be extended R-linearly to maps RLy — RLg_1,
which induce the maps on the module:

g;,07g;,oovg;,+ag;,— : ;qd(Rv l;m) — ﬁdfl(Ra [, m). .



Idea of proof (freeness)
We apply the maps on >, r(A) 0. E.g., applying gq,0, we get
03 B (B0, 670(0c,) + r(B0.,) 6108, + rBH:,) 6ol + (R, ol )
BEBy_1

—1 —1
5 (,(Becd) (88, + ~D o)+ #45%)).

For the other three maps we get:

//1
o b (AL

cg) T r(BHCd)> .
BeBy_,

The 4 x 4 system has an invertible determinant. By induction on the
number of bonds, we conclude that the module is free
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Computing the invariant

Let K be a bonded knot. The expression [K]z, K written in the basis of
the skein module, is an invariant of colored bonded knots.

We can compute the invariant [K];3 by the following set of instructions:

1. isolate the bonds using move IV,
2. cut out the bonds (using the relations in the freeness proof),

3. compute the HOMFLYPT polynomial P of the remaining part of the

classical knot.
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Example 1

The ©-curve ©3; has three associated bonded knots.

& - & E &

Q)= =g+ img

{&}B - [@)}B — (Pm? = 2P 4+ m? — 1) + (Im* — 2Im) §
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Example 2

Toxins from venomous organisms form disulfide-rich peptides.

CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)

1
6 4 2 46,22 o4 2
K ]_: Pmt(—1—3% —3* — 54 Pm +2Im)98g
[CN” )2(127ml+1)2<

B (1412212 +ml+1
F P32 3t 1 —m? — 62w 6 m? — Cm? 4 Pm® +3/4m4)9g8
F 7 m(—1— 2+ /2m2)g88 +Omd(—1— 2% 4 /2m2)688
6 4 2 4 2 po2 42 24 5 5 2 4 22 42 \
+Pm (=1 =2 =" —=m® — I“m" + "m" +I"m") +Pm’ (=1 =317 =2[" +1"m" 4+ ["m")

/
[KADWX-l] B 1+ 222 + ,,,,Jrll)z(@ Ty (,6,,,4(,1 Y- /4m2)988
(=4 —a? 4 2/%%668 TP (—1 4 /‘USS% T mP (=2 — 21 ¢ /%%888
At 2R+ A = 2Pm? =3P /4m4>988 L Omt (2 — 4R — 2 2/4,,,2)688) "



The HOMFLYPT skein module of non id bonded knots

Theorem (G., 2019)
The HOMFLYPT skein module of rigid bonded knots # is freely
generated by all finite products of ©’s:

B= {eglegz-..e;k | ﬁeNg\G}u{U}.

It holds for a knot K with k bonds that

s = () Puys

where B € B and P(K’) is the HOMFLYPT polynomial of K without
bonds.
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Example 2 (non-rigid case)

CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)
2m2 2m2

[Kenaolg = iy ©°, [Kapwx-1lg = iy ©3.
(1+7) (1+7)
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Expanding the variables / further work

Incorporate into the invariant information about the bonded knots' CT
(circuit topology).

\

!

Kcnzg CT(Kcnzg) Kabwx-1 CT(Kapwx-1)
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Expanding the variables / further work

Generalize the Yamada polynomial R : (Gig C R3) — Z[A*1] to bonded
knots.

The yamada polynomial is defined by the following relations:
\ _ - —
1. R(A) AR() () +A 1R</\> +R<><>7
2. R(G) = R(G —e) + R(G/e), e ni zanka,

3. R(G1U G2) = R(G1)R(G2),
4. R(Gl V G2) = —R(Gl)R(GZ)a

5. R(&) =—(-A-1-A"1)",
6. R(0) =1.

Remark: the R is an invariant of rigid-vertex graphs with max degree
> 4, but an invariant non-rigid-vertex graphs with max degree < 3.

26



Expanding the variables / further work

Generalize Kauffman's T invariant

Let G C S be spatial graph. Consider the local replacements of a vertex:

YA

Let r(G) be the set of closed curves obtained by local replacements of all
vertices.

OOz 0—0, 00, -
= T(H_-L)-g_oo o}

D B, @,

= T'(Hz.) 10D, 03.

@61 T2)=10. .



Expanding the variables / further work

We can expand T by counting the number of bonds lying on the closed
components.

Consider coloring two different arcs of the ©-curve ©3;:

© - Y9

Values of the extended invariant T’ on these two bonded knots

VR
¥ . DY .00

—

—

—
@ DY Y  .eo
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